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On the infrasound generated when a train enters a tunnel
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Abstract

An analysis is made of the ‘open air infrasound’ generated when a train enters a tunnel. For a tunnel of nominal

radius R and train speed U the acoustic frequency BU/R and wavelength BR=McR; where M is the train Mach

number. Infrasound is inaudible, but the pressure fluctuations generated by a high-speed train (M>0.2) can cause

annoying vibrations and ‘rattles’ in dwellings and other buildings close to a tunnel portal. Detailed calculations are

presented in this paper for a ‘hood-like’ portal modelled analytically by the end of a circular cylindrical, thin-walled

duct, and for an axisymmetric ‘train’ entering along the axis of the duct. A slender body approximation is used to model

the influence of the moving train, and the acoustic problem is solved using the exact Green’s function for a semi-infinite

cylinder. Predictions are in good agreement with recent track-side measurements reported by Iida et al. (Proceedings of

the 50th Japan National Congress on Theoretical and Applied Mechanics) for model scale experiments conducted at

Mach numbersM as large as 0.33. However, both measurements and theory indicate that in applications at full scale it

may be important to include in estimates of the infrasound the nonacoustic ‘near-field’ pressures produced by the

passing train.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

A train entering a tunnel generates a compression wave that propagates ahead of the train, into the tunnel at the

speed of sound (Hara et al., 1968; Fox and Vardy, 1973; Woods and Pope, 1976). In a long tunnel the compression

wavefront can experience nonlinear steepening ultimately manifested by a loud, impulsive bang or ‘crack’ (called a

‘micro-pressure’ wave) radiating from the distant tunnel exit when the compression wave arrives (Ozawa et al., 1976,

1991; Ozawa Maeda, 1988). In addition, however, inaudible low-frequency pressure fluctuations (infrasound at

frequenciesB10–20Hz) are also radiated from the vicinity of the tunnel portal into the open air when the train enters
(and leaves) the tunnel (Iida et al., 2000, 2001). These waves can vibrate and ‘rattle’ structures in neighbouring

buildings; they constitute a potentially important environmental hazard and a deterrent to the introduction of very

high-speed operations (up to 500 kph) in urban areas.

Fig. 1 illustrates schematically the manner in which the ambient infrasound generated when a train enters a tunnel is

studied by Iida et al. (2000, 2001) using model-scale experiments (for which the characteristic ‘infrasound’ frequency is

about 2 kHz). An axisymmetric ‘train’ of total length c consists of a circular cylindrical mid-section of radius h and

cross-sectional areaAo ¼ ph2; fitted with ellipsoidal nose and tail pieces each of length L. It is projected at speeds U up

to 400 kph into a tunnel formed by a circular cylindrical, hard walled duct of radius R. The model train is guided by a

tightly stretched steel wire extending along the centre-line of the tunnel and passing through a smooth cylindrical hole

drilled along the train axis. The Reynolds number of the air flow induced by a train is large enough for the interaction

between the train and tunnel portal to be regarded as inviscid (including the influence of the separated ‘exit flow’ from
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the tunnel of the air displaced by the entering train). The properties of the sound produced by the interaction will

therefore scale predominantly on train Mach number M=U/co (co=speed of sound in air) and on the ‘blockage’

Ao=A;whereA ¼ pR2 is the cross-sectional area of the tunnel. Model scale experiments will accordingly supply a

reliable indication of full scale results providedM and relative physical dimensions of the tunnel and train are the same

(Ozawa et al., 1976; Ozawa and Maeda, 1988).

The purpose of this paper is to investigate the dependence of the infrasound on the train Mach number by exact

analysis of a simple canonical problem. This will extend to arbitrary Mach number the approximate analyses of Iida

et al. (2000, 2001) and of Howe (2001), who found that the infrasound amplitude varies asM3 at small Mach numbers.

The canonical problem is motivated by the method used by the author (Howe, 1998a, b; 1999) for the compression

wave problem, which was subsequently validated by model scale experiments (Howe et al., 2000). Introduce rectangular

coordinates x=(x, y, z) with origin O on the axis of symmetry in the tunnel entrance plane of Fig. 1, with the negative

x-axis coinciding with the axis of the tunnel. In the experiments the tunnel is sufficiently long that it may be regarded as

extending to x ¼ �N for the purposes of calculation. The train nose profile is streamlined with aspect ratio h=LB1
3
; and

flow separation over the nose region will therefore be neglected. However, it will be necessary to include the influence of

wake separation from the tail region of the train, as indicated in the figure. The train is assumed to enter the tunnel at

constant speed U. In the envisaged applications the Mach numberMr0:4; and the blockageAo=A is usually less than
about 0.2.

In the presence of the moving train the air pressure %p; density r, and sound speed c, become functions of position x

and time t. Let their respective undisturbed values be denoted by po; ro; co: Thermal and frictional losses occurring
during the interaction of the train with the tunnel entrance will be ignored. The air flow may therefore be regarded as

adiabatic and the infrasound calculated from the corresponding aeroacoustic equation for the production of sound in

the presence of a moving surface (Howe, 1998a)
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where v(x, t) is the velocity of the air x=curl v is the vorticity, and B ¼
R
d %p=rð %pÞ þ 1

2
v2 is the total enthalpy. The

vorticity x is nonzero principally within the shear layers of the exit flow from the tunnel entrance of the air displaced by

the advancing train and in the wake of the train; separation and vorticity production elsewhere on the train are ignored.

In these circumstances B is constant throughout the fluid when the train is absent, and may therefore be assumed to

vanish in the far field prior to the entry of the train into the tunnel. The air at large distances from the tunnel entrance is

linearly perturbed from its undisturbed state, where we can take

BE
p

ro
; p ¼ %p � po: ð1:2Þ

The moving train is acoustically equivalent to a continuum of monopole and dipole sources distributed over the nose

and tail regions where the cross-sectional area of the train is variable. The monopoles account for the displacement of

Fig. 1. Schematic model-scale experimental apparatus for studying the infrasound generated at a tunnel portal by an entering high-

speed train.
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air ahead of and to the rear of the train. Pressure forces over the nose and tail produce a distributed drag force

represented by the dipoles. Howe et al. (2000) obtained the following slender body approximation for the combined

distributions of these monopoles and dipoles:

U 1þ
Ao

A

� �
@

@t

@AT

@x
ðx þ UtÞdðyÞdðzÞ

� �
; ð1:3Þ

where AT ðsÞ is the cross-sectional area of the train at distance s from the tip of the nose, which is taken to cross the

entrance plane of the tunnel at time t=0. The approximation replaces the exact monopole and dipole distributions on

the surface of the train by a line source on those sections of the train axis where the cross-sectional area is variable, in

the vicinities of the train nose and tail. The contribution of the term inAo=A in (1.3) represents the effect of the drag
dipole. According to Howe et al. (2000) the slender body approximation is expected to be valid at least forAo=Ar0:2;
which covers most situations at full scale involving high-speed operations. This representation of the train has been

found to yield excellent predictions of the compression wave generated when the front of the train enters the tunnel for

several different tunnel portal geometries (Howe et al., 2000; Yoon and Lee, 2001).

In these calculations of the compression wave the train is usually assumed to be very long, and the tail and its wake

are therefore ignored. To determine the infrasound, however, it is also be necessary to include the sound produced as

the tail enters the tunnel. To do this the influence of the wake must be modelled; its contribution to the radiation is

governed by the vortex source on the right of (1.1). In a leading approximation, which should be adequate at the low

frequencies relevant for infrasound, the outer boundary of the wake can be regarded as fixed relative to the moving

train, and therefore to form a uniformly convecting boundary (depicted by the wavy lines in Fig. 1) between the vortical

interior wake motions and the exterior irrotational unsteady flow. Thus, when the shape of the wake boundary is

known its influence on the exterior flow can be accounted for simply by regarding it as a continuation of the train

boundary. In other words, the combined effects of the train and wake are given by source (1.3) providedAT ðx þ UtÞ is
taken to define the cross-sectional area of the solid body imagined to be formed by the train and its wake. The simplest

such model, discussed later in this paper, is obtained by assuming the wake boundary to consist of a semi-infinite

circular cylinder (coaxial with the train) extending downstream from the separation point on the tail of the train. In this

case @AT=@x ¼ 0 in the axial region occupied by the wake, which therefore (see (1.3)) does not generate sound.
However, because separation occurs upstream of the end of the train (a distance dw in Fig. 1), this null source strength

actually means that the wake acts to eliminate surface sources that would otherwise be produced by the cross-sectional

area variations of the train to the rear of the separation point. The presence of the wake is therefore expected to reduce

the overall source strength of the tail region.

We shall neglect the small component of the infrasound attributable to the vorticity in the free shear layer of the low-

velocity ‘jet’ flow from the tunnel, produced by the air displaced by the entering train. This is already known (Howe

et al., 2000) to have a relatively small influence on the compression wave generated within the tunnel, and its

contribution to the exterior sound should be similarly small. The hypothesis is further supported by the results of

Section 3 below. Note, however, that observations (Auvity et al., 2001) indicate that vortex roll-up near the mouth can

produce a relatively large, slow moving hydrodynamic structure whose near-field pressure fluctuations may contribute

significantly to pressure measurement made near the mouth.

Each of the separate interactions of the nose and tail with the tunnel entrance occurs typically over a timeBR/U, so

that the characteristic wavelength of the infrasoundBR/M which greatly exceeds the radius h of the train, even at the

maximum anticipated train Mach number of MB0.4 (UE500 kph). Because the mean air flow induced by the train is
confined to the immediate neighbourhood of the train, it follows that the convection and scattering of the sound by this

flow can be expected to be small. Eq. (1.1) can therefore be approximated by
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where here and henceforth AT ðx þ UtÞ is to be interpreted as the cross-section of the train and its wake.
This equation is solved in Section 2 in terms of the exact Green’s function for a semi-infinite circular cylinder. The

infrasound is produced by the interaction of the duct entrance with the near field of the source on the right-hand side.

For the case depicted in Fig. 1, and for comparison with the experiments discussed below in Section 4, the circular

cylindrical tunnel walls are taken to be rigid, on which the normal derivative @B=@xn ¼ 0: The solution is used in Section
3 to examine the Mach number dependence and the directionality of the infrasound. Approximate formulae are then

derived for the prediction of the infrasound produced by a train of arbitrary nose profile, in which the effects of Mach

number and the directionality are separated out from those produced by the geometrical shape of the nose and tail of

the train. Predictions are compared (Section 4) with track side measurements of the infrasound made by Iida et al.

(2001). There is good overall agreement except in radiation directions in front of the tunnel. Here both theory and
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experiment indicate relatively weak sound levels. Calculations are performed that suggest that, at least for these

experiments, the measured pressures in these directions are dominated by the near-field pressure fluctuations of the

passing train.

2. General representation of the infrasound

2.1. Green’s function

When the source on the right of Eq. (1.4) is prescribed, the equation can be solved exactly by making use of Green’s

function G(x, x0, t�t) that has vanishing normal derivative on the inner and outer walls of the semi-infinite, circular
cylindrical tunnel walls. G(x, x0, t�t) is the solution of

1

c2o

@2

@t2
�r2

� �
G ¼ dðx� x0Þdðt � tÞ; G ¼ 0 for tot ð2:1Þ

and represents the sound produced by an impulsive point source located x0 at time t in the presence of the cylinder.
The solution of (2.1) can be cast in the form of a Fourier integral by first writing

Gðx; x0; t � tÞ ¼ Goðx; x0; t � tÞ þ Gsðx; x0; t � tÞ; ð2:2Þ

where Goðx; x0; t � tÞ is the ‘free space’ solution, describing the spherically symmetric wave generated by the point
source in the absence of the cylinder. Then Gsðx; x0; t � tÞ may be interpreted as the secondary wave field produced by
the diffraction of this spherical wave by the rigid walled cylinder. Noble (1958) has given a detailed discussion of this

diffraction problem for arbitrary source position x0, but the solution can be rendered in a greatly simplified form when

the ultimate application is to solve Eq. (1.4), in which the source term on the right-hand side is axisymmetric, and when

the observer at x is in the acoustic far field of the cylinder (i.e. when |x|-N outside the cylinder). In that case formulae

given in Chapter 3 of Noble (1958) supply

Gsðx; x0; t � tÞ

¼
sinY

16ip3ð1þ cosYÞjxjZ Z
N

�N

gJ1ðkoR sinYÞW�ðkÞI0ðgr0Þeifkx0�oðt�t�jxj=coÞgdk do
ðk þ koÞðk þ ko cosYþ i0ÞW ð�ko cosYÞI1ðgRÞ

;

jxj-N; ð2:3Þ

where Y is the angle in Fig. 1 between the x-axis of symmetry and the ray to the observer at x in the far field, the point

source is at x0 ¼ ðx0; y0; z0Þ ðwith r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y02 þ z02Þ

p
; J1; I0;1 are Bessel functions, and

ko ¼ o=co; g ¼
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9>>>>>>=
>>>>>>;

ð2:4Þ

where K1 is a modified Bessel function (Abramowitz and Stegun, 1970). In (2.3) the singularity of the integrand at

k ¼ �ko is avoided by assigning to ko (i.e. to o) a small positive imaginary part that is subsequently allowed to vanish;
similarly, the notation ‘i0’ indicates that the integration contour in the k-plane is required to pass above the pole at

k ¼ �ko cosY:

2.2. The infrasound

Green’s function permits the solution of Eq (1.4) to be cast in the form

Bðx; tÞ ¼ U 1þ
Ao

A

� �
@

@t

Z Z
N

�N

Gðx; x0; 0; 0; t � tÞ
@AT

@x0 ðx0 þ UtÞdx0 dt; ð2:5Þ

where G is given by (2.2). When the observer position x is in the acoustic far field the contribution from the free space

Green’s function G0 can be discarded, since it merely determines the hydrodynamic near field of the uniformly
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convecting source distribution that represents the train. The production of propagating sound waves by the interaction

of these sources with the tunnel portal is governed by the component Gs of G.

Thus, because BEp=ro far from the tunnel, we find
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A

� �
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where ½t� ¼ t � jxj=co is the retarded time. When the integration variable x0 is replaced by x00 ¼ x0 þ Uðt� ½t�Þ; it can be
seen that the integration with respect to t in (2.6) yields the factor 2pdðo� UkÞ: Hence, we can write
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where

F ðx0;M;YÞ ¼ �Re

Z
N

0

J1ðMkR sinYÞW � ðkÞeikx0
R dk

W�ð�Mk cosYÞI1ðkR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M2Þ

p : ð2:8Þ

The functionsW�ðkÞ;W�ð�Mk cosYÞ in the integrand of (2.8) are to be evaluated using definition (2.4) with ko ¼ Mk:

2.3. Pressure pulse generated by the front of the train: snub nose approximation

To establish an overall picture of the properties of the infrasound we examine first the sound generated as the nose of

the train passes into the tunnel, ignoring for the moment the subsequent contributions from the tail and wake of the

train. A specific train nose profile defined by the train cross-section area AT ðxÞ is discussed in Section 4, when a
comparison is made with experiment. However, for the remainder of this section we shall consider the very convenient,

but idealized case of a snub-nosed train, whose aspect ratio h/L is very large. In the limit L-0 we have, formally,

1

Ao

@AT

@x0 ðx
0 þ U ½t�Þ ¼ dðx0 þ U ½t�Þ: ð2:9Þ

Thus, for the purpose of calculating the infrasound, the nose of the train is now equivalent to a point source of constant

strength convecting into the tunnel along the axis of symmetry, and Eq. (2.7) becomes

pðx; tÞ
roc2oðAo=AÞ 1þAo=A

� �
R=4pjxj
� �E sinY

ð1þ cosYÞð1þ M cosYÞ
M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M2

p
1þ M

Fð�U ½t�;M;YÞ: ð2:10Þ

The right-hand side of this formula is plotted in Fig. 2a as a function of the nondimensional retarded time U[t]R for

Y=90� andM=0.1, 0.2, 0.3 and 0.4. The front of the train (the ‘point source’) crosses the tunnel entrance plane x=0

at time t=0. The figure reveals that the interaction with the tunnel begins when the front of the train is about two tunnel

radii ahead of the entrance, producing a rarefaction pulse of width B2R/M and duration B2R/U, the maximum
negative pressure occurring just before entry into the tunnel. The magnitude of this maximum exhibits significant

variations with the radiation angle Y. These are illustrated in Fig. 2b, where the magnitude of the peak negative
pressure is depicted as a polar plot forM=0.2–0.4. There is a radiation null along the directionY=0 directly in front of
the tunnel entrance. This occurs for the following reason: the radiation can be ascribed to an acoustic monopole whose

strength is determined by the net unsteady airflow through the tunnel portal produced by the entering train, together

with a dipole source orientated parallel to the tunnel axis whose amplitude depends on the hydrodynamic force on the

air outside the tunnel applied across the entrance plane of the tunnel because of the inertia of the air inside the tunnel

(see Howe, 1998a, Section 3.2). Destructive interference of the radiations from these sources produces the null ahead of

the tunnel; but the radiations combine in other directions, producing a progressively increasing peak pressure as Y
increases to 180�. These plots indicate that the amplitude of the sound increases rapidly with the Mach numberM. This

is illustrated in Fig. 3, where the solid circles represent the peak pressure amplitudes calculated from (2.10) when

Y=90� for Mach numbers ranging from 0.05 to 0.55, revealing a Mach number dependence close to M3.
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3. Dependence on Mach number and radiation direction

When M2{1 it follows easily from definitions (2.4) that (for k>0)

J1ðMkR sinYÞE
MkR sinY

2
; I1ðkR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M2

p
ÞEI1ðkRÞ

W�Mk cosYÞE eiMkc0 cos Y; where c0 ¼ �
R

p

R
N

0

ln½2I1ðmÞK1ðmÞ�dm
m2

W�ðkÞE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I1ðkRÞK1ðkRÞ

p
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p

R
N
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I1ðKRÞK1ðKRÞ
I1ðkRÞK1ðkRÞ

� �
dK

K2 � k2

� 	 ð3:1Þ

Fig. 2. (a) The nondimensional far-field acoustic pressure signature pðx; tÞ=roc
2
o

Ao

A
1þ

Ao

A

� �
R

4pjxj

� �
at Y=90� produced when the

front of a snub-nosed train defined by (2.9) enters the tunnel. (b) Polar plot illustrating the dependence of the peak negative pressure at

a fixed radial distance |x| from the tunnel portal on radiation direction Y.

Fig. 3. Dependence on Mach number of the peak absolute pressure at Y=90� for a snub nosed train: �, Eq. (2.10); ——,
approximation (3.6).

M.S. Howe / Journal of Fluids and Structures 17 (2003) 629–642634



and therefore that

F ðx0;M;YÞEpRM sinY
@2j�

@x02 ðx
0 � Mc0 cosY; 0; 0Þ; M2{1; ð3:2Þ
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m2 � x2
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To interpret these approximate expressions, observe first that the length c0E0:6127R in (3.1) is the acoustic ‘end-
correction’ of the open end of an unflanged cylindrical duct of radius R (Rayleigh, 1926; Noble, 1958). The function

j*(x) is the velocity potential of an ideal, incompressible flow out of the mouth of the duct (at x=0) that satisfies

(Howe, 1998c)

j�ðxÞB
x � c0 for jxjcR inside the duct;

�A=4pjxj for jxjcR outside the duct;

(

so that the flow defined by this potential has unit speed at large distances from the mouth inside the duct.

It now follows that, when M2 is negligible, formula (2.7) for the acoustic pressure can be cast in the form
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M2{1; jxj-N; ð3:4Þ

in which the modified retarded time is given by

½t0� ¼ t �
ðjxj � c0 cosYÞ

co

Et �
jx� c0ij

co

; jxjcR; ð3:5Þ

where i is a unit vector in the x-direction. Representation (3.4) is a generalization of the approximation derived by

Howe (2001, Eq. (4.15)) (based on the theory of compact Green’s functions), where the terms inM in the denominators

are absent and [t0] is replaced by [t].

Approximation (3.4) is of value because it identifies the dependence of the sound on tunnel portal geometry (which

governs the functional form of j�ðxÞÞ; and on the Mach numberM and radiation direction Y. For the snub nosed train
defined by the uniformly translating point source (2.9), it yields

pðx; tÞ
roc2oð1þAo=AÞðR=4pjxjÞ

E
pM3ð1� cosYÞ

ð1þ MÞð1þ M cosYÞ
R
@2j�

@x02 ð�Uð½t� þ c0 cosY=coÞ; 0; 0Þ: ð3:6Þ

The nondimensional function R@2j�ðx; 0; 0Þ=@x2; evaluated on the axis of symmetry of the tunnel, vanishes except
near the tunnel mouth, where it exhibits a deep negative minimum of the type shown in Fig. 2a for M=0.4 (with x

identified with �U ½t�=RÞ; it attains a minimum value of Rð@2j�=@x2ÞminE� 0:64 at x ¼ 0:2R; just outside the
tunnel. The solid curve in Fig. 3 is the nondimensional absolute pressure determined by (3.6) at Y=90� when
R@2j�=@x02 is assigned this minimum value, i.e. it corresponds to the low Mach number approximation to the peak

pressure radiated in this direction. It is in excellent agreement with the exact numerical predictions (represented by the

solid circles) for Mach numbers M as large as 0.55, much larger than might be expected from our requirement above

that M2{1:
The solid and broken-line directivity curves in Fig. 4 are calculated respectively from Eq. (2.10) and the low Mach

number approximation (3.6). Although the agreement is good at Y=90� and for all angles when Mo0.3, at larger
intermediate angles the approximate formula tends to overpredict the amplitude when M>0.3. The dotted curves are

plotted from the following empirical correction to (3.6):

pðx; tÞ
roc2oð1þAo=AÞðR=4pjxjÞ

E
pM3ð1� cosYÞð1þ 0:4M2 sin 2YÞ

ð1þ MÞð1þ M cosYÞ
R
@2j�

@x02 ð�Uð½t� þ c0 cosY=coÞ; 0; 0Þ: ð3:7Þ

In Fig. 5 we compare for M=0.4 (the largest value likely to be encountered in applications) the far-field pressure

signatures predicted by the exact formula (2.10) (the solid curves) and approximation (3.7) (dotted) for the snub-nosed
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train for Y=45�, 90� and 135�. The predictions are essentially the same, except for small differences in phase that are

unimportant in practice.

These results suggests that a uniform approximation for Mp0.4 and arbitrary train nose profile is supplied by the
following modification of (3.4):

pðx; tÞE
roU

2M

4pjxjð1þ MÞ
1þ

Ao

A

� �
ð1� cosYÞð1þ 0:4M2 sin 2YÞ

ð1þ M cosYÞ


Z
N

�N

@AT

@x0 ðx
0 þ U ½t0�Þ

@2j�

@x02 ðx
00; 0Þ dx0; jxj-N:

ð3:8Þ

It is interesting to note that the integral in this formula is identical with that determining the ‘gradient’

of the wavefront of the compression wave radiated into the tunnel ahead of the train. This can be taken to justify

our neglect of the exit flow vorticity in the calculation of the infrasound, since it would occur here in exactly the

same relative terms as in the compression wave problem, where its contribution is known to be small (Howe

et al., 2000).

The infrasound and the compression wave in the tunnel are generated simultaneously. The latter emerges from the far

end of the tunnel as the ‘micro-pressure’ wave whose peak amplitude scales approximately asM3, the same as illustrated

in Fig. 3 for the peak infrasound. We can, in fact, interpret the micro-pressure wave as another manifestation of the

infrasound that radiates into the open air only after being modified (by wave steepening or damping, depending on

track conditions) during its propagation along the length of the tunnel.

Fig. 4. The exact directivity of the peak pressure amplitude (——) determined by Eq. (2.10) for a snub-nosed train compared with

approximation (3.6) (- - - -) and the corrected approximation (3.7) (� � �).

Fig. 5. Nondimensional far-field acoustic pressure signature pðx; tÞ=roc
2
o

Ao

A
1þ

Ao

A

� �
R

4pjxj

� �
at Y=45�, 90�, 135� produced when

the front of the snub-nosed train (2.9) enters the tunnel at M=0.4: ——, exact formula (2.10); � � �, approximation (3.7).
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4. Comparison with experiment

4.1. Experiments of Iida et al. (2001)

The model scale experiments of Iida et al. (2001) outlined in Section 1 involved a train with ellipsoidal nose and tail

sections. The nose profile is obtained by rotating the curve y ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=LÞð2� x=LÞ;

p
0oxoL about the x-axis; the

overall cross-sectional area distribution of the train is therefore given by

AT ðsÞ
Ao

¼

s
L
ð2� s

L
Þ 0osoL;

1; Losoc� L;

ðc
L
� s

L
Þð2� c

L
þ s

L
Þ; c� Losoc:

8><
>: ð4:1Þ

where (see Fig. 1)

h ¼ 2:235 cm; L ¼ 6:7 cm; c ¼ 59:3 cm:

The tunnel radius R=5cm, and the blockage A=AoE0:2:
To calculate the sound the wake is assumed to have a circular cylindrical mean boundary, and to separate from the

train at a distance dw ahead of the tip of the tail. Then the effective ‘source’ strength @AT ðsÞ=@x0 in the exact and

approximate solutions (2.7) and (3.8) is nonzero only in the interval 0osoc� dw; where

1

Ao

@AT

@x0 ðsÞ ¼

2
L
ð1� s

L
Þ; 0osoL;

0; Losoc� L;
2
L
ðc
L
� 1þ s

L
Þ; c� Losoc� dw:

8><
>: ð4:2Þ

The acoustic pressure was measured at a constant offset distance of 10R from the axis of symmetry of the tunnel,

at the three stations (i), (ii), (iii) indicated in Fig. 6, corresponding respectively to ðjxj;YÞ ¼
ð10

ffiffiffi
2

p
R; 45�Þ; ð10R; 90�Þ; ð10

ffiffiffi
2

p
R; 135�Þ:

The open triangles in Fig. 7 and 8 represent the measured acoustic pressures plotted as a function of U[t]R,

respectively, for train speeds U=409 and 251 kph ðME0:33; 0:2Þ: The nose of the train crosses the plane x=0 of the

tunnel entrance at U ½t�=R ¼ 0; and the train is fully within the tunnel when U ½t�=R > c=RE11:9: At these times
the measurements at stations (ii) and (iii) exhibit large negative and positive peaks as the train nose and tail pass into the

tunnel: the negative pulse of duration B2R=U is generated by the nose interacting with the tunnel entrance.

The positive pressure peak produced by the tail of the train (at U ½t�=RB11Þ is similar in structure but smaller in
amplitude. The time histories of the pressures received at station (i) are similar for the two different train speeds, but no

clear peaks are evident. Iida et al. (2000, 2001) conjectured that the relatively weak radiation at this station is

overwhelmed by the near field (nonacoustic, or ‘pseudo-sound’) pressure fluctuations generated by the passing train.

The solid and dotted curves in Figs. 7 and 8 are the predictions of the exact and approximate solutions (2.7) and (3.8),

respectively. The differences between these predictions are negligible; even the phase differences noted previously in

Fig. 5 at higher Mach numbers are of no practical significance. In the calculations we have assumed that the wake

separates from the tail at a distance dw=0.2L from the tip of the tail; there is no theoretical or observational

justification for this assumption, but it is consistent with numerical predictions reported by Schetz (2001). The

corresponding agreement with experiment is seen to be good at station (iii) at both train speeds, with excellent

predictions of both peaks. Note that the wake acts to reduce the amplitude of the second peak; if the wake were ignored

it would hardly alter predictions at station (ii) relative to experiment, but there would be poor agreement of the

predicted and measured second peaks at station (iii). The theory fails to capture the uniformly negative pressures

recorded at stations (ii) and (iii) in the interval 2oU[t]/Ro10, and the overall agreement is much worse at station (ii).
At station (i), in front of the tunnel, the predictions can arguably be associated with small excursions of the observed

pressure profiles, but are very weak and appear to be submerged within the near field noise conjectured by Iida et al.

(2000, 2001).

4.2. Influence of near field pressure fluctuations

A proper estimate of the contribution to the measured pressures at stations (i)–(iii) of the ‘hydrodynamic’ pressure

fluctuations produced by the passing train and by its entrance into the tunnel can be made provided the appropriate

functional form of Green’s function (2.2) is known. Approximation (2.3) is applicable only in the ‘acoustic far field’,

where the hydrodynamic effects are supposedly negligible. Formulae given in Noble (1958) are in principle sufficient to
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determine Gðx; x0; t � tÞ everywhere, but they are difficult to apply except with the assistance of extensive numerical
computations.

However, a straightforward approximation to both the acoustic near and far fields can be made in explicit analytic

form by using the ‘compact’ approximation to Gðx; x0; t � tÞ; which is applicable when the characteristic wavelength of

Fig. 7. n n n, measured pressures at Stations (i)–(iii) for U=409kph; ——, infrasound prediction of the exact solution (2.7); � � �,
the approximation (3.8); - - - -, near-field approximation (4.9).

Fig. 6. Acoustic pressure measurement stations (i), (ii), (iii), respectively, at (|x|, Y)= ð10
ffiffiffi
2

p
R; 45�Þ; ð10R; 90�Þ; ð10

ffiffiffi
2

p
R; 135�Þ:
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the sound is known to be large compared to the duct radius R. It is given by (Howe, 1998a)

Gðx; x0; t � tÞ ¼
1

4pjX� X0j
d t � t�

ðjX� X0j � ½j�ðxÞ þ j�ðx0Þ�Þ
co

� �
; ð4:3Þ

provided either the source position x0 or observer position x is located at a large distance ðcRÞ from the duct entrance
in free space. The function j� is defined as in Section 3.1; X ¼ ðX ðxÞ;Y ðxÞ;ZðxÞÞ is called the Kirchhoff vector for the
duct entrance, and is defined such that its component in the i-direction is equal to the velocity potential of

incompressible flow from infinity outside the duct that has unit speed in the i-direction at large distances from the

entrance (and is exponentially small at large distance |x| within the tunnel), i.e.

XB
x; jxj-N outside the duct;

0; x-N inside the duct:

(

X can be evaluated in analytic form for a circular cylindrical duct. In particular X � x � j�ðxÞ; so thatX �
ðx � j�ðxÞ;Y ðxÞ;ZðxÞÞ andX0 � ðx0 � j�ðx0Þ;Y ðx0Þ;Zðx0ÞÞ:
The representation (4.3) is an approximate solution of the Green’s function Eq. (2.1) that agrees with the exact

Green’s function when the latter is expanded in a multipole series in which all terms of quadrupole order and higher are

discarded. When the Mach numberM=U/co is small the wavelength of the infrasound generated when the train enters

the tunnel BOðR=MÞcR; and this limiting case was examined by Howe (2001) using (4.3). The procedure yields the

Fig. 8. n n n, measured pressures at Stations (i)–(iii) for U=251kph; ——, infrasound prediction of the exact solution (2.7); � � �,
approximation (3.8); - - - -, near-field approximation (4.9).
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following low Mach number limit of the acoustic far field (3.8):

pðx; tÞE
roU

2M

4pjxj
1þ

Ao

A

� �
ð1� cosYÞ

Z
N

�N

@AT

@x0 ðx
0 þ U ½t0�Þ

@2j�

@x02 ðx
0; 0; 0Þdx0; jxj-N: ð4:4Þ

However, (4.3) can also be used to determine the hydrodynamic component of the far field. To do this we first

observe that the characteristic frequency of the near-field pressure decreases with distance from the train like U/r, where

r denotes lateral distance from the axis of the tunnel. These pressures accordingly make a relatively low-frequency

contribution to the ‘sound’ at the measurement points, where r=10R, and cannot be significantly dependent on the

shapes of the train nose and tail. For the purpose of estimating the near-field contribution to the pressure it is therefore

sufficient to ignore the detailed geometries of the train nose and tail, and to use of the following approximation forA0
T :

1

Ao

@AT

@x0 ðx
0 þ UtÞ ¼ dðx0 þ cc þ UtÞ � ð1� DÞdðx0 � cþ cc þ UtÞ; ð4:5Þ

where cc ¼ 2
3
L is the distance of the centroid of the nose monopole distribution from the nose tip, and the term

D ¼
dw

L
2�

dw

L

� �
ð4:6Þ

accounts for the reduction in the negative source strength of the tail produced by the wake. This source is to be used in

(2.5). Near-field pressure fluctuations produced by the motion of sources (4.5) prior to the arrival at the tunnel entrance

are uninfluenced by the pressure drag on the nose of the train arising as the train enters the tunnel. At such times the

factorAo=A in (2.5), which takes formal account of the drag dipole, should therefore be omitted. Because our theory
does not include a smooth transition between the absence and presence of this dipole, and because the correction

produced by the factorAo=A is in our case only 20%, we shall omit this term for all times. Indeed (see below), there is
a rapid cut-off of near-field contributions from a source once it has entered the tunnel, so that the approximation is

unlikely to have a significant influence on our predictions.

At the relatively low frequencies that characterize the near field of the train, the pressure field is convected along

steadily by the moving train prior to being cut-off by tunnel entry, and possible changes occurring during the time

required for the passage of an acoustic disturbance from the tunnel mouth to the observer can be ignored. Thus, the

near-field approximation of Green’s function (4.3) may be taken in the form

Gðx; x’; t � tÞE
1

4pjx� X0j
dðt � tÞ; ð4:7Þ

and used to evaluate (2.5) with the omission of the factor ð1þAo=AÞ: At the measurement stations (i)–(iii) the
unsteady motion is irrotational with velocity potential fðx; tÞ; say, and (2.5) determines fðx; tÞ from the relation

�
@f
@t

� BE
p

ro
þ
1

2
ðrfÞ2; ð4:8Þ

where, after integrating with respect to time, Eq. (2.5) and (4.7) imply that the hydrodynamic near field is given by

fðx; tÞE
U

4p

Z
N

�N

A0
T ðx

0 þ UtÞdx0

jx� iX ðx0; 0; 0Þj
; ð4:9Þ

where i is a unit vector in the x-direction. It follows from this and Eq. (4.5) that at the observation points (i)–(iii) the

terms on the right of (4.8) have the relative magnitudes

ðrfÞ2B
R

r

� �2
p

ro
{

p

ro
;

and therefore that the near-field pressure pEroB; as in the acoustic field, so that

pðx; tÞE
�roU

2

4p

R
N

N

@

@x0

1

jx� iX ðx0; 0; 0Þj

� �
A0

T ðx
0 þ UtÞ dx0

¼
�roU

2

4

A0
o

A
Fðx;�Ut þ cc; 0; 0Þ � ð1� DÞFðx;�Ut þ cc; 0; 0Þð Þ;

ð4:10Þ

where

Fðx; x0Þ �
@

@x0

R2

jx� iX ðx0Þj

� �
¼

R2ðx � x0 þ j�ðx0ÞÞ

jx� iðx0 � j�ðx0ÞÞj3
1�

@j�

@x0 ðx
0Þ

� �
: ð4:11Þ

M.S. Howe / Journal of Fluids and Structures 17 (2003) 629–642640



The formula (Howe, 1998c)

@j�

@x0 ðx
0; 0; 0Þ ¼

1

2
�
1

2p

Z
N

�N

2K1ðxÞ
I1ðxÞ

� �1=2
sin x

x0

R
þZðxÞ

� �� 	
dx ð4:12Þ

can be used to evaluate the function Fðx; x0Þ of (4.11), where ZðxÞ is defined as in (3.3). But (4.12) implies that
1� @j�ðx0Þ=@x0 is exponentially small within the tunnel. Therefore, because j�ðx0Þ is small outside the tunnel and near
the tunnel entrance, we can approximate Fðx; x0Þ by

Fðx; x0ÞE
R2ðx � x0Þ

jx� ix0j3
1�

@j�

@x0 ðx
0Þ

� �
:

This function characterizes the spatial variations of the near field of the train outside the tunnel; it tends smoothly to

zero as the source point x0 passes into the tunnel, which then ‘shields’ it from an exterior observer.

The calculated contributions from the near field correction are plotted as the broken line curves in Figs. 7 and 8. The

time t and [t] are effectively identical for the near-field pressure, which hardly varies during the time required for a

pressure pulse to travel from the tunnel exit to the observation point. The results for both Mach numbers at station (i)

indicate that the near-field pressures actually dominate the measured pressure fluctuations. Elsewhere the near-field

corrections yield overall pressure variations that are qualitatively consistent with the extended negative pressures

observed in the interval 2oU[t]/Ro10, but are too small to account fully for the experimental results. It is possible that
the additional pressures are associated with the near field of the large torroidal vortex observed to be ejected from the

tunnel mouth as the front of the train enters the tunnel (Auvity et al., 2001). This vortex also generates infrasound by

interaction with the tunnel mouth, but only as the train nose enters the tunnel, when the additional relative acoustic

pressure fluctuations are expected to be similar in magnitude to those occurring during compression wave formation in

the tunnel, viz about 5% (cf. Our remark above following Eq. (3.8)). However, more detailed observations are necessary

in order to decide whether the large differences between theory and experiment evident in Figs. 7 and 8 are a

consequence of the measurement technique or are caused by these additional hydrodynamic aspects of the entry flow.

5. Conclusion

The mean pressure po(t), say, just ahead of a train rises as the train approaches a tunnel portal. The pressure rise

propagates into the tunnel forming a compression wave whose wavefront thickness is proportional to the time required

for the nose of the train to pass into the tunnel. The production of this wave creates a transient flow of air through the

tunnel mouth of mass fluxBApoðtÞ=co: This flux is acoustically equivalent to a low-frequency monopole sound source
that radiates (in the ‘free space’) outside the tunnel with an essentially uniform directivity. In addition, however, a net

force aApoðtÞ is exerted on the air outside the tunnel, over the tunnel entrance cross-section and over the solid area of
the exterior tunnel portal, where the ‘efficiency factor’ a is a functionA=AE ;AE being the tunnel cross-sectional area

A augmented by the solid face area of the portal. This force constitutes an acoustic dipole, so that the net infrasound

radiation from the portal at low Mach numbers is proportional to

ða cosY� 1ÞA
cojxj

@po

@t
t �

jxj
co

� �
: ð5:1Þ

The theory and experiments discussed in this paper are concerned with the infrasound generated at a ‘hood-like’

tunnel entrance, modeled by the end of a long circular cylindrical, thin walled duct ðso thatAE � AÞ: Our analysis
using the exact acoustic Green’s function for the special case of an axisymmetric train entering along the axis of the

tunnel confirms that a=1 in this case, and also permits predictions to be made at the higher Mach numbers (B0.4) of
newer trains. Predictions are in general agreement with measurement (Iida et al., 2001), but both experiment and theory

imply that in practice it may also be important to include contributions from the near-field (‘pseudo-sound’) pressure

fluctuations generated by the train when making estimates of the overall intensity of the infrasound impinging on

dwellings and other structures close to the tunnel portal.

Eq. (5.1) suggests for more general tunnel entrance geometries that the directionality of the infrasound depends

critically on the value of a. Preliminary calculations not reported here indicate that ao1 whenAE > A for ‘flanged’

tunnels of circular cross-section, and that the dipole strength progressively decreases with increasing flange size,

ultimately decaying like ðA=AEÞ
1=2: Similarly, the relative configuration of the train and tunnel will usually be

asymmetric, and in practice it will also be important to include estimates of the dipole sound generated by the resulting

‘side-force’ exerted on the air when the train enters the tunnel. This dipole is orientated parallel to any tunnel flange,
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and its contribution to the infrasound will therefore be effectively independent of AE : It may be calculated in a first
approximation by the methods of this paper using the compact Green’s function (4.3).
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